Large-eddy simulation of kerosene spray combustion in a model scramjet chamber

نویسنده

  • M Zhang
چکیده

Large-eddy simulation (LES) of kerosene spray combustion in a model supersonic combustor with cavity flame holder is carried out. Kerosene is injected through the ceiling of the cavity. The subgrid-scale (SGS) turbulence stress tensor is closed via the Smagorinsky’s eddyviscosity model, chemical source terms are modelled by a finite rate chemistry (FRC) model, and a four-step reduced kerosene combustion kinetic mechanism is adopted. The chamber wall pressure predicted from the LES is validated by experimental data reported in literature. The test case has a cavity length of 77 mm and a depth of 8 mm. After liquid kerosene is injected through the orifice, most of the droplets are loaded with recirculation fluid momentum inside the cavity. Due to lower velocity of the carrier fluid inside the cavity, sufficient atomization and evaporation take place during the process of droplet transportation, resulting in a rich fuel mixture of kerosene vapour accumulating inside the cavity. These rich fuel mixtures are mixed with fresh air by the approach Q1 mixing layer at the front of the cavity and are thus involved in burning accompanied with the approach boundary layer separation extending towards upstream. The combustion flame in the downstream impinges onto the rear wall of the cavity and is then reflected back to the front of the cavity. During the recirculation of hot flow, heat is compensated for evaporation of droplets. The circulation processes mentioned above provide an efficient flame-holding mechanism to stabilize the flame. Comparisons with results from a shorter length of cavity (cavity length of 45 mm) show that, due to insufficient atomization and evaporation of the droplets in the short distance inside the cavity, parts of the droplets are carried out of the cavity through the boundary layer fluctuation and evaporated in the hot flame layer, thus resulting in incomplete air fuel mixing and worse combustion performance. The flow structures inside the cavity play an important role in the spray distribution, thus determining the combustion performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational evaluation of strut based scramjet engine combustion with different conventional fuel/oxidizer

The high performance and instability in combustion chamber are the most challenging requirements for faster developments and technical advances in most of the engines. The design and development challenges of such engines are highly influenced by its combustion behavior taking place inside the combustion chamber. Studies on the injection, vaporization and combustion phenomena inside combustion ...

متن کامل

Accurate Simulation of Low-Pressure Port Fuel and Water Spray in Internal Combustion Engines; Numerical and Experimental Study

One of the solutions to reduce pollutants and increase engine power is to use water spray in internal combustion engines. In this type of engine, fuel and water sprays play an important role in engine performance. In this regard, the purpose of this study is to accurately simulate fuel and water sprays and provide optimal coefficients to achieve the best simulation results. For this purpose, th...

متن کامل

Methodical Aspects of Investigation of Kerosene Ignition and Combustion in Scramjet Model

Introduction The latest studies of the overall characteristics of hypersonic flying vehicles with airbreathing engines have shown that these vehicles are fairly promising. Some additional problems arise, however, that are related to the definition of the general shape of the aircraft, the choice of propulsion type and operation regimes, the engine size and position on the aircraft body. There h...

متن کامل

Large eddy simulation modelling of combustion for propulsion applications.

Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the eff...

متن کامل

Large eddy simulation of propane combustion in a planar trapped vortex combustor

Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010